Измерение концентрации версамида стеариновой кислоты (ВСК) методом тонкослойной хроматографии в воздухе рабочей зоны

Государственное санитарно-эпидемиологическое нормирование Российской Федерации

УТВЕРЖДЕНО

Председатель Госкомсанэпиднадзора России

Главный государственный санитарный врач

Российской Федерации

Е.Н. Беляев

8 июня 1996 г.

МУК 4.1.0.414-96

Дата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентрации версамида стеариновой кислоты (ВСК) методом тонкослойной хроматографии в воздухе рабочей зоны

М. м. 636.12

Основные физико-химические свойства вещества: мелкокристаллический порошок светло-желтого цвета. Т $_{\Pi\Pi}$. - 87 - 89 °C. Растворим в диметилформамиде, диметилсульфоксиде, хлороформе; ограниченно растворим в воде, этаноле. Давление паров при 20 °C - 528 Па (4 мм рт. ст.), при 70 °C - 954 Па (7 мм рт. ст.).

В воздухе находится в виде аэрозоля.

Версамид стеариновой кислоты является малотоксичным препаратом (IV класс опасности).

На коже, в местах нанесения эмульсии версамида стеариновой кислоты, не наблюдалось покраснений, либо шелушений.

ОБУВ в воздухе - 10 мг/м^3 .

Характеристика метода

Метод основан на хроматографическом выделении версамида стеариновой кислоты в тонком слое сорбента с последующим проявлением хроматограмм водно-ацетоновым раствором нитрата серебра и бром-фенолового синего, либо хлорированием препарата с последующей реакцией с о-толидином.

Отбор проб проводится с концентрированием (бумажный фильтр «синяя лента», хлороформ).

Предел измерения вещества в анализируемом объеме пробы - 5 мкг.

Предел измерения в воздухе - 1 мг/м 3 .

Диапазон измеряемых концентраций в воздухе - от 1 до 10 мг/м $^{3}.$

Определению не мешают исходные продукты синтеза.

Граница суммарной погрешности измерения - ± 18,5 %.

Время выполнения анализа, включая отбор проб, - 2,5 ч.

Реактивы, растворы и материалы

FOCT 2603-79 Ацетон ос. ч. н-Гексан, ос. ч. ТУ 6-09-3375-75 Хлороформ, х. ч. **FOCT 20015-74 FOCT 4166-76** Сульфат натрия безводный, ч. ТУ 6-09-1058-76 Бромфеноловый синий, ч. д. а. ГОСТ 18270-72 Уксусная кислота ледяная, ос. ч. **FOCT 1277-75** Азотнокислое серебро, ч. д. а. **FOCT 3118-77** Соляная кислота х. ч. Калия перманганат, ч. д. а. **FOCT 20490-75** о-Толидин MPTY 6-09-6337-69 Фильтры бумажные безводные «синяя лента» ТУ 6-09-1678-77

Пластинки для TCX «Силуфол» размером

150 ′ 150 мм, (ЧСФР)

Пульверизатор

Калий йодистый **FOCT 4232-63 FOCT 5827-68** Углерод четыреххлористый

Подвижная фаза: гексан-ацетон (2:1)

Проявляющий реактив № 1: готовят 0,5 %-ный водно-ацетоновый (1:3) раствор AgNO₃ и 0,5 %-ный раствор бромфенолового синего в ацетоне. Затем раствор бромфенолового синего разбавляют раствором азотнокислого серебра до объема 100 мл.

Проявляющий реактив № 2: 160 г толидина растворяют в 30 мл ледяной уксусной кислоты и 500 мл дистиллированной воды и прибавляют 1 г К1.

Раствор для хлорирования: смешивают равные объемы 3 %-ного раствора перманганата калия и 12 %-ного раствора соляной кислоты в четыреххлористом углероде, фильтруют через бумажный фильтр, хранят в холодильнике.

Стандартный раствор версамида стеариновой кислоты с концентрацией 100 мкг/мл готовят растворением 10 мг препарата в мерной колбе с притертой пробкой в 100 мл хлороформа. Хранят в холодильнике не более 1 месяца.

	Приборы, аппаратура, посуда
Электроаспиратор для отбора проб воздуха	ТУ 64-1-862-77
Весы аналитические ВЛА-200М	
Фильтродержатели	
Склянка для промывания и очистки газов	
(склянка Дрекселя)	ТУ 25-11-1062-75
Ротационный вакуумный испаритель	
для отгонки растворителей ИР- ІМ	ТУ 25-11-917-74
Водяная баня	ТУ 64-1-425-72
Колбы конические, вместимостью 100 мл	ГОСТ 10394-72
Колбы грушевидные	ГОСТ 10394-72
Воронки химические, диаметром 6 см	FOCT 8613-75
Колбы мерные, вместимостью 25 мл	ΓΟCT 1770-74
Пипетки, вместимостью 0,1 и 1 мл	ГОСТ 1770-74
Цилиндры мерные, вместимостью 50 мл	ГОСТ 1770-74
Камера хроматографическая	ГОСТ 10565-75

Проведение измерения

ГОСТ 10591-74

Условия отбора проб воздуха. Воздух с объемным расходом 0,5 л/мин последовательно аспирируют через помещенный в фильтродержатель бумажный фильтр «синяя лента» и склянку Дрекселя, содержащую 100 мл хлороформа. Для определения 1/2 ОБУВ отбирают не более 5 л воздуха. Длительность хранения пробы в холодильнике - не более 5 суток.

Условия анализа. Бумажный фильтр, содержащий аэрозоль, из фильтродержателя помещают в коническую колбу и заливают 25 мл хлороформа. Экстрагируют пестицид из фильтра в течение 1 ч. Экстракцию повторяют дважды. Объединенный экстракт сушат безводным сульфатом натрия (5 - 10 г) и сливают в колбу для отгонки растворителя. Хлороформ из поглотителя переносят в коническую колбу, сушат безводным сульфатом натрия и сливают в колбу для отгонки растворителей. Отгоняют растворитель на ротационном испарителе до объема ~ 0,2 мл. Подготовленную пробу количественно наносят на хроматографическую пластинку «Силуфол». На эту же пластинку наносят 5, 10 и 20 мкг версамида стеариновой кислоты и проводят хроматографирование в системе растворителей гексанацетон (2:1) в камере, насыщенной парами подвижных растворителей. После поднятия фронта растворителя на 10 см пластинку вынимают и сушат на воздухе. Для обнаружения версамида стеариновой кислоты (ВСК) пластинку обрабатывают проявляющим реактивом № 1 на основе бромфенолового синего. Препарат проявляется в виде желтого пятна, Rf = 0,61. В случае использования проявляющего реактива № 2 (о-толидин) необходимо предварительно провести хлорирование. Хроматограмму помещают в эксикатор, содержащий раствор для хлорирования, на 3 - 6 мин, после чего сушат при комнатной температуре 10 мин и опрыскивают раствором отолидина. Версамид стеариновой кислоты обнаруживается в виде темно-синих пятен, Rf = 0,61.

Количество препарата в пробе определяют сравнением интенсивности окраски и площади пятен пробы и стандартного раствора. Зависимость величины площади пятна от концентрации соблюдается в интервале концентраций от 1 до 20 мкг. Если содержание препарата в пробе превышает верхнюю границу диапазона, то для нанесения на пластинку необходимо брать аликвотную часть экстракта параллельной пробы.

Расчет концентрации

Концентрацию версамида (С) в воздухе (мг/м 3) вычисляют по формуле:

$$C = \frac{a \cdot e}{6 \cdot V}$$
,где

- а количество препарата, найденного в хроматографическом объеме пробы, мкг;
- δ общий объем пробы, мл;
- в объем пробы, взятой для хроматографирования, мл;
- V объем воздуха, отобранного для анализа и приведенного к стандартным условиям, л (см. приложение 1).

Методические указания разработаны УкрНИИГинтокс, г. Киев.

Приложение 1

Приведение объема воздуха к стандартным условиям (температура 20 °C и давление 760 мм рт. ст.)

проводят по формуле

$$V_{20} = \frac{V + (273 + 20) \cdot P}{(273 + t) \cdot 101,33}$$
,где

- V_t объем воздуха, отобранный для анализа, л;
- P барометрическое давление, кПа (101,33 кПа = 760 мм рт. ст.);
- t температура воздуха в месте отбора пробы, °С.

Для удобства расчета V_{20} следует пользоваться таблицей коэффициентов (приложение 2). Для приведения воздуха к стандартным условиям надо умножить V_{t} на соответствующий коэффициент.

Приложение 2

Коэффициенты для приведения объема воздуха к стандартным условиям

	Давление Р, кПа/мм рт. ст.									
°C	97,33/730	97,86/734	98,4/738	98,93/742	99,46/746	100/750	100,53/754	101,06/758	101,33/760	101,86/764
-30	1,1582	1,1646	1,1709	1,1772	1,1836	1,1899	1,1963	1,2026	1,2058	1,2122
-26	1,1393	1,1456	1,1519	1,1581	1,1644	1,1705	1,1768	1,1831	1,1862	1,1925
-22	1,1212	1,1274	1,1336	1,1396	1,1458	1,1519	1,1581	1,1643	1,1673	1,1735
-18	1,1036	1,1097	1,1158	1,1218	1,1278	1,1338	1,1399	1,1460	1,1490	1,1551
-14	1,0866	1,0926	1,0986	1,1045	1,1105	1,1164	1,1224	1,1284	1,1313	1,1373
-10	1,0701	1,0760	1,0819	1,0877	1,0986	1,0994	1,1053	1,1112	1,1141	1,1200
-6	1,0540	1,0599	1,0657	1,0714	1,0772	1,0829	1,0887	1,0945	1,0974	1,1032
-2	1,0385	1,0442	1,0499	1,0556	1,0613	1,0669	1,0726	1,0784	1,0812	1,0869
0	1,0309	1,0366	1,0423	1,0477	1,0535	1,0591	1,0648	1,0705	1,0733	1,0789
+2	1,0234	1,0291	1,0347	1,0402	1,0459	1,0514	1,0571	1,0627	1,0655	1,0712
+6	1,0087	1,0143	0,0198	1,0253	1,0309	1,0363	1,0419	1,0475	1,0502	1,0557
+10	0,9944	0,9999	0,0054	1,0108	1,0162	1,0216	1,0272	1,0326	1,0353	1,0407
+14	0,9806	0,9860	0,9914	0,9967	1,0027	1,0074	1,0128	1,0183	1,0209	1,0263
+18	0,9671	0,9725	0,9778	0,9830	0,9884	0,9936	1,9989	1,0043	1,0069	1,0122
+20	0,9605	0,9658	0,9711	0,9783	0,9816	0,9868	0,9921	0,9974	1,0000	1,0053
+22	0,9539	0,9592	0,9645	0,9696	0,9749	0,9800	0,9853	0,9906	0,9932	1,9985
+24	0,9475	0,9527	0,9579	0,9631	0,9683	0,9735	0,9787	0,9839	0,9865	1,9917
+26	0,9412	0,9464	0,9516	0,9566	0,9618	0,9669	0,9721	0,9773	0,9799	1,9851
+28	0,9349	0,9401	0,9453	0,9503	0,9555	0,9605	0,9657	0,9708	0,9734	1,9785
+30	0,9288	0,9339	0,9391	0,9440	0,9432	0,9542	0,9594	0,9645	0,9670	0,9723
+34	0,9167	0,9218	0,9268	0,9318	0,9368	0,9418	0,9468	0,9519	0,9544	0,9595
+38	0,9049	0,9099	0,9149	0,9199	0,9248	0,9297	0,9347	0,9397	0,9421	0,9471

Приложение 3

Ловушка-концентратор.

Общий вид.

Рис. 2

Ловушка-концентратор.

Приложение 4

Вещества, определяемые по ранее утвержденным методическим указаниям						
Название вещества 1. Аммоний винно-кислый кислый	Методические указания Методические указания на фотометрическое определение аммиака: Сб. МУ в. 1 - 5 М., 1981 58 с.					
Аммоний винно-кислый	К = 9,82 Методические указания на фотометрическое определение аммиака: Сб. МУ в. 1 - 5 М., 1981 - 58 с.					
 Калий винно-кислый Калий виннокислый кислый 	 К = 5,41 Методические указания по измерению концентраций сульфата калия, калийной магнезии и хлорида калия в воздухе рабочей зоны: Сб. МУ, в. 22 М., 1988 - 182 с. 					
3. Калий сурьмоксид винно-кислый	К = 2,9 и 4,82 Методические указания по полярографическому измерению концентраций сурьмы в воздухе рабочей зоны: Сб. МУ, в. 8 М., 1983 90 с.					
4. Натрий винно-кислый кислый	К = 2,66 Методические указания по измерению концентраций натрия сульфата в воздухе рабочей зоны методом атомно-абсорбционной спектрофотометрии: Сб. МУ, в. 21 М., 1986 - 135с.					
Натрий винно-кислый	К = 7,48 Методические указания по измерению концентраций натрия сульфата в воздухе рабочей зоны методом атомно-абсорбционной спектрофотометрии: Сб. МУ, в. 21 М., 1986 - 135 с.					
Калий-натрий винно-кислый	К = 4,22 Методические указания по измерению концентраций натрия сульфата в воздухе рабочей зоны методом атомно-абсорбционной спектрофотометрии: Сб. МУ, в. 21 М., 1986 135 с.					
5. Полиметилмочевина6. Трифторметансульфофторид (фторангидрид трифторметан сульфокислоты)	К = 3,39 Методические указания по гравиметрическому определению пыли в воздуже рабочей зоны и в системах вентиляционных установок: Сб. МУ, в. 1 - 5 М., 1981 235 с. Методические указания на фотометрическое определение фторорганических соединений: Сб. МУ, в. 1 - 5 М. 1981 187 с.					
7. Хлоргидрат изонипекотиновой кислоты	K = 2 Методические указания на фотометрическое определение диэтиламина в воздухе: Сб. МУ, в. 1 - 5 М., 1981 123 с. Отбор проб на фильтр со скоростью 2 л/мин.					