Измерение концентраций этилтиадиазола (5-этил-2-амино-1,3,4-тиадиазола) методом высокоэффективной жидкостной хроматографии в воздухе рабочей зоны

Государственная система санитарно-эпидемиологического нормирования Российской Федерации

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентраций этилтиадиазола (5-этил-2-амино-1,3,4-тиадиазола) методом высокоэффективной жидкостной хроматографии в воздухе рабочей зоны

МУК 4.1.0.405-96

Минздрав России

Москва · 1999

- 1. Методические указания разработаны с целью обеспечения контроля соответствия фактических концентраций вредных веществ их предельно допустимым концентрациям (ПДК) и ориентировочно безопасным уровням воздействия (ОБУВ) санитарно-гигиеническим нормативам и являются обязательными при осуществлении санитарного контроля.
- 2. Методические указания по измерению концентраций вредных веществ в воздухе рабочей зоны (выпуск 32) утверждены и. о. Председателя Госкомсанэпиднадзора России заместителем Главного государственного санитарного врача Российской Федерации 8 июня 1996 г.
- 3. Введены впервые.
- 4. Включенные в данный выпуск методики контроля разработаны и подготовлены в соответствии с требованиями ГОСТа 12.1.005-88 ССБТ «Воздух рабочей зоны. Общие санитарно-гигиенические требования», ГОСТа 12.1.016-79 ССБТ «Воздух рабочей зоны. Требования к методикам измерения концентраций вредных веществ», ГОСТа Р 1.5-92 п. 7.3, ГОСТа 8.101-90 «Государственная система обеспечения единства измерений. Методики выполнения измерений». Методические указания одобрены комиссией по государственному санитарно-эпидемиологическому нормированию Госкомсанэпиднадзора России и Проблемной комиссией «Научные основы гигиены труда и профпатологии».

Методические указания по измерению концентраций вредных веществ в воздухе рабочей зоны (выпуск 32) предназначены для центров Госсанэпиднадзора, санитарных лабораторий промышленных предприятий при осуществлении контроля за содержанием вредных веществ в воздухе рабочей зоны, а также заинтересованных министерств и ведомств.

Ответственный исполнитель: Г.А. Дьякова

Исполнители: Г.А. Дьякова, Л.Г. Макеева, Е.М. Малинина, С.М. Попова, Н.С. Горячев, М.И. Аржанова, Т.В. Рязанцева, Е.Н. Грицун.

УТВЕРЖДЕНО

И. о. Председателя Госкомсанэпиднадзора

России - заместителем Главного

государственного санитарного врача

Российской Федерации

Г.Г. Онищенко

8 июня 1996 г.

МУК 4.1.0.405-96

Дата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентраций этилтиадиазола (5-этил-2-амино-1,3,4-тиадиазола) методом высокоэффективной жидкостной хроматографии в воздухе рабочей зоны

М. м. 129,16

5-Этил-2-амино-1,3,4-тиадиазол (этилтиадиазол) - кристаллическое вещество серого цвета. Хорошо растворим в воде, этиловом и метиловом спиртах.

В воздухе находится в виде аэрозоля.

Обладает общетоксическим действием.

ПДК в воздухе - 4 мг/м 3 .

Характеристика метода

Метод основан на использовании высокоэффективной жидкостной хроматографии с применением УФ-детектора.

Отбор проб производится с концентрированном на фильтр.

Нижний предел измерения этилтиадиазола в хроматографируемом объеме (15 мкл) - 1,5 мкг.

Нижний предел измерения этилтиадиазола в воздухе - 0.5 мг/м 3 (при отборе 250 л воздуха).

Диапазон измеряемых концентраций этилтиадиазола в воздухе от 0,5 до 10 мг/м 3 .

Суммарная погрешность измерения не превышает ±20 %.

Время выполнения измерения, включая отбор пробы - около 30 мин.

Приборы, аппаратура, посуда

Микроколоночный жидкостный хроматограф

«Милихром» или другие модели с УФ-детектором

Хроматографическая колонка длиной 64 мм.

внутренним диаметром 2 мм, заполненная

сорбентом «Силасорб 600» с размером зерен

5,0 мкм (ЧСФР)

Аспирационное устройство

Фильтродержатель

 Колбы мерные, вместимостью 100 мл
 ГОСТ 1770-74

 Пипетки, вместимостью 1, 5 мл
 ГОСТ 20292-74

 Пробирки с пришлифованными пробками
 ГОСТ 10515-75

Реактивы, растворы, материалы

Этилтиадиазол

Пропанол-2 (спирт изопропиловый), х. ч. ТУ 6-09-402-87

Элюент: хлороформ - пропанол-2 (1:1)

Стандартный раствор этилтиадиазола с концентрацией 0,6 мг/мл готовят растворением 0,06 г этилтиадиазола в элюенте в мерной колбе, вместимостью 100 мл. Раствор устойчив при хранении в холодильнике в течение недели.

Фильтры АФА-ВП-20 ТУ 95-743-80

Отбор проб воздуха

Воздух с объемным расходом 20 л/мин аспирируют через фильтр АФА-ВП-20. Для определения 0,5 ПДК достаточно отобрать 250 л воздуха. Пробы можно хранить в закрытых сосудах в холодильнике в течение месяца.

Подготовка к измерению

Жидкостный хроматограф готовят к работе согласно приложенной к нему инструкции. Для работы используют хроматографическую колонку промышленного изготовления.

Из стандартного раствора готовят соответствующим разбавлением элюентом градуировочные растворы с концентрациями этилтиадиазола от 0,1 до 2 мг/мл. Для построения градуировочного графика из каждого градуировочного раствора в колонку жидкостного хроматографа вводят по 15 мкл, что будет соответствовать от 1,5 до 30 мкг этилтиадиазола.

Условия хроматографирования градуировочных смесей и анализируемых проб:

Температура термостата колонки +20 °C

Скорость подачи элюента (хлороформ - пропанол-2 (1:1)) 200 мкл/мин

Длина волны УФ-детектора 254 нм

Скорость движения диаграммной ленты 5 мм/мин

Чувствительность детектора 0,8

Диапазон измерения самописца 100 мВ

Максимальный объем вводимой пробы 15 мкл

Время удерживания этилтиадиазола 2 мин

Элюирующий объем 390 мкл

Эффективность колонки по этилтиадиазолу 2500 тт

На полученной хроматограмме измеряют площади пиков и строят градуировочную кривую, выражающую зависимость площади пиков (м м²) от содержания этилтиадиазола в хроматографируемом объеме пробы (мкг). Построение градуировочного графика необходимо проводить не менее чем по 6 точкам, выполняя по 5 параллельных измерений для каждого инжектируемого объема. Проверку градуировочного графика следует проводить при изменении условий анализа, но не реже 1 раза в месяц.

Проведение измерения

Фильтр с отобранной пробой помещают в пробирку с пришлифованной пробкой, добавляют 5 мл элюента и оставляют на 15 минут при

комнатной температуре и перемешивании стеклянной палочкой. Степень десорбции с фильтра составляет 96 %.

Хроматографирование анализируемого раствора проводят в тех же условиях и с тем же элюентом, что и при построении градуировочного графика.

Количественное определение этилтиадиазола в хроматографируемом объеме проводят по предварительно построенному графику.

Расчет концентрации

Концентрацию этилтиадиазола (C) в воздухе (мг/м 3) вычисляют по формуле:

$$C = \frac{a \cdot e}{6 \cdot V}$$
, $e \partial e$

- а содержание этилтиадиазола в хроматографируемом объеме пробы, найденное по градуировочному графику, мкг;
- δ объем пробы, взятой на хроматографирование, мл;
- в общий объем анализируемого раствора, мл;
- V объем воздуха, отобранного для анализа и приведенного к стандартным условиям, л (см. приложение 1).

Методические указания разработаны НИО «Экотокс», г. Москва.

Приложение 1

Приведение объема воздуха к стандартным условиям (температура 20 °C и давление 760 мм рт. ст.) проводят по формуле:

$$V_{20} = \frac{V_t(273 + 20) \cdot P}{(273 + t) \cdot 101,33}, ede$$

- V_t объем воздуха, отобранный для анализа, л;
- P барометрическое давление, кПа (101,33 кПа = 760 мм рт. ст.);
- t температура воздуха в месте отбора пробы, °С.

Для удобства расчета V₂₀ следует пользоваться таблицей коэффициентов (приложение 2). Для приведения воздуха к стандартным условиям надо умножить V_t на соответствующий коэффициент.

Приложение 2

Коэффициенты для приведения объема воздуха к стандартным условиям

°C					Давление Р, н	«Па/мм рт. ст.				
C	97,33/730	97,86/734	98,4/738	98,93/742	99,46/746	100/ 7 50	100,53/754	101,06/758	101,33/760	101,86/764
-30	1,1582	1,1646	1,1709	1,1772	1,1836	1,1899	1,1963	1,2026	1,2038	1,2122
-26	1,1393	1,1456	1,1519	1,1581	1,1644	1,1705	1,1768	1,1831	1,1862	1,1925
-22	1,1212	1,1274	1,1336	1,1396	1,1458	1,1519	1,1581	1,1643	1,1673	1,1735
-18	1,1036	1,1097	1,1158	1,1218	1,1278	1,1338	1,1399	1,1460	1,1490	1,1551
-14	1,0866	1,0926	1,0986	1,1045	1,1105	1,1164	1,1224	1,1284	1,1313	1,1373
-10	1,0701	1,0760	1,0819	1,0877	1,0986	1,0994	1,1053	1,1112	1,1141	1,1200
-6	1,0540	1,0599	1,0657	1,0714	1,0772	1,0829	1,0887	1,0945	1,0974	1,1032
-2	1,0385	1,0442	1,0499	1,0556	1,0613	1,0669	1,0726	1,0784	1,0812	1,0869
0	1,0309	1,0366	1,0423	1,0477	1,0535	1,0591	1,0648	1,0705	1,0733	1,0789
+2	1,0234	1,0291	1,0347	1,0402	1,0459	1,0514	1,0571	1,0627	1,0655	1,0712
+6	1,0087	1,0143	1,0198	1,0253	1,0309	1,0363	1,0419	1,0475	1,0502	1,0557
+10	0,9944	0,9999	1,0054	1,0108	1,0162	1,0216	1,0272	1,0326	1,0353	1,0407
+14	0,9806	0,9860	0,9914	0,9967	1,0027	1,0074	1,0128	1,0183	1,0209	1,0263
+18	0,9671	0,9725	0,9778	0,9830	0,9884	0,9936	0,9989	1,0043	1,0069	1,0122
+20	0,9605	0,9658	0,9711	0,9783	0,9816	0,9868	0,9921	0,9974	1,0000	1,0053
+22	0,9539	0,9592	0,9645	0,9696	0,9749	0,9800	0,9853	0,9906	0,9932	0,9985
+24	0,9475	0,9527	0,9579	0,9631	0,9683	0,9735	0,9787	0,9839	0,9865	0,9917
+26	0,9412	0,9464	0,9516	0,9566	0,9618	0,9669	0,9721	0,9773	0,9799	0,9851
+28	0,9349	0,9401	0,9453	0,9503	0,9555	0,9605	0,9657	0,9708	0,9734	0,9785
+30	0,9288	0,9339	0,9391	0,9440	0,9432	0,9542	0,9594	0,9645	0,9670	0,9723
+34	0,9167	0,9218	0,9268	0,9318	0,9368	0,9418	0,9468	0,9519	0,9544	0,9595
+38	0,9049	0,9099	0,9149	0,9199	0,9248	0,9297	0,9347	0,9397	0,9421	0,9471

Приложение 3

Вещества, определяемые по ранее утвержденным методическим указаниям по измерению концентраций вредных веществ в воздухе рабочей зоны

Определяемое вещество	Ссылка на источник
Аммония полифосфат	Методические указания на фотометрическое определение аммиака в воздухе, в. 1 - 5 М., 1981 С. 58
Алюминия сульфат	Методические указания на фотометрическое определение алюминия, окиси алюминия и алюмоникелевого катализатора в воздухе, в. 1 - 5 М., 1981 С. 3
2,5-бифенилилендиацетат	Методические указания на гравиметрическое определение пыли в воздухе рабочей зоны и в системах вентиляционных установок, в. 1 - 5 М., 1981 С. 235
Виндидат	Методические указания по измерению концентраций сульфата калия, калийной магнезии и хлорида калия в воздухе рабочей зоны методом пламенной фотометрии, в. 22 М., 1988 С. 182
Пиотипонтриомин	Методические указания по фотометрическому измерению концентраций третичных жирных

диэтилентриамин

Дубитель хромовый

Дуниты

Кобазол

Кремния карбид

Полибутилентерефталат

Полимер кубовых остатков ректификации стирола (термополимер «КОРС») В-фенилэтиламидхлоруксусная кислота (контроль по бензолу)

Фториды редкоземельных металлов

Хлопковая мука

Целлюлоза микрокристаллическая

аминов и аминоспиртов в воздухе рабочей зоны, в. 19. - М., 1984. - С. 137

Методические указания на фотометрическое определение окиси хрома в воздухе рабочей

зоны, в. 14. - М., 1979. - С. 108

Методические указания на гравиметрическое определение пыли в воздухе рабочей зоны и в

системах вентиляционных установок, в. 1 - 5, - М., 1981, - С. 235

Методические указания по фотометрическому определению кобальта, в. 1 - 5. - М., 1981. - С.

Методические указания на гравиметрическое определение пыли в воздухе рабочей зоны и в системах вентиляционных установок, в. 1 - 5. - М., 1981. - С. 235

Методические указания на гравиметрическое определение пыли в воздухе рабочей зоны и в

системах вентиляционных установок, в. 1 - 5. - М., 1981. - С. 235

Методические указания на гравиметрическое определение пыли в воздухе рабочей зоны и в системах вентиляционных установок, в. 1 - 5. - М., 1981. - С. 235

Методические указания по газохроматографическому измерению ацетона, дихпорметана, дихлорэтана, трихлорэтилена, бензола в воздухе рабочей зоны, в. 9. - М., 1986. - С. 23

Методические указания по ионометрическому измерению концентраций солей

фтористоводородной кислоты, в. 21. - М., 1986. - С. 269

Методические указания по фотометрическому определению БВК в воздухе рабочей зоны, в.

18. - M., 1983. - C. 139

Методические указания на гравиметрическое определение пыли в воздухе рабочей зоны и в

системах вентиляционных установок, в. 1 - 5. - М., 1981. - С. 235

Приложение 4

Рис. 1

Ловушка-концентратор. Общий вид